Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172627, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653422

RESUMO

The increasing prevalence of microplastics (MP) in urban environments has raised concerns over their negative effects on ecosystems and human health. Stormwater runoff, and road dust and sediment, act as major vectors of these pollutants into natural water bodies. Sustainable urban drainage systems, such as permeable pavements, are considered as potential tools to retain particulate pollutants. This research evaluates at laboratory scale the efficiency of permeable interlocking concrete pavements (PICP) and porous concrete pavements (PCP) for controlling microplastics, including tire wear particles (TWP) which constitute a large fraction of microplastics in urban environments, simulating surface pollution accumulation and Mediterranean rainfall conditions. Microplastic levels in road dust and sediments and stormwater runoff inputs were 4762 ± 974 MP/kg (dry weight) and 23.90 ± 17.40 MP/L. In infiltrated effluents, microplastic levels ranged from 2.20 ± 0.61 to 5.17 ± 1.05 MP/L; while tire wear particle levels ranged between 0.28 ± 0.28 and 3.30 ± 0.89 TWP/L. Distribution of microplastics within the layers of PICP and PCP were also studied and quantified. Microplastics tend to accumulate on the pavements surface and in geotextile layers, allowing microplastic retention efficiencies from 89 % to 99.6 %. Small sized (< 0.1 mm) fragment shaped microplastics are the most common in effluent samples. The results indicate that permeable pavements are a powerful tool to capture microplastics and tire wear particles, especially by surface and geotextile layers. The study aims to shed light on the complex mobilisation mechanisms of microplastics, providing valuable insights for addressing the growing environmental concern of microplastic pollution in urban areas.

2.
Environ Pollut ; 347: 123772, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490527

RESUMO

Determining the sources of marine litter is necessary to mitigate this increasing global problem. Plastic bottles are useful tracers of marine litter and constitute the main item (24%) stranding on remote beaches in the Galapagos Islands. The aim of this study was to estimate the abundance of plastic bottles in remote beaches and inferred their sources. To do so, we collected plastic bottles at 60 remote Galapagos Island beaches from 2018 to 2022. 76% of beaches were qualified as badly polluted, with >34 bottles·100 m-1. Most identified bottles came from Peru (71%), followed by China (17%) and Ecuador (9%). Although most locally-sold products are made in Ecuador, they contribute little to beach litter loads. Polyethylene terephthalate bottles with lid (necessary for litter dispersal) represented 88% of all bottles, demonstrating that most of the litter reaching the Galapagos comes from distant sources, mainly from South America. However, bottle ages indicate that at least 10% of Peruvian, 26% of Ecuadorian, and all Chinese bottles likely were dumped from ships. Reducing marine litter reaching the Galapagos Islands requires tackling litter leakage from land-based sources in South America and better compliance with regulations banning the dumping of plastics and other persistent wastes from ships.


Assuntos
Praias , Resíduos , Equador , Resíduos/análise , Monitoramento Ambiental , América do Sul , Plásticos
3.
Sci Total Environ ; 876: 162810, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921855

RESUMO

The presence of microplastics in the food chain is a public concern worldwide, and its analysis is an analytical challenge. In our research, we apply Raman imaging to study the presence of 1 µm polystyrene microplastics in cryosections of Mytilus galloprovincialis due to its wide geographic distribution, widespread occurrence in the food web, and general high presence in the environment. Ingested microplastics are accumulated in the digestive tract, but a large number can also be rapidly eliminated. Some authors state that the translocation of microplastics to the epithelial cells is possible, increasing the risk of microplastics transmission along the food chain. However, as seen in our study, a surface imaging approach (2D) is probably not enough to confirm the internalization of particles and avoid misinterpretation. In fact, while some microplastic particles were detected in the epithelium by 2D Raman imaging, further 3D Raman imaging analysis demonstrated that those particles were dragged from the lumens to the epithelium during sample preparation due to the blade drag effect of the cryotome, and subsequently located on the surface of the analyzed cryosection, discarding the translocation to the epithelial cells. This effect can also happen when the samples are fortuitously contaminated during sample preparation. Several research articles that use similar analytical techniques have shown the presence of microplastics in different types of tissue. It is not our intention to put such results in doubt, but the present work points out the necessity of appropriate three-dimensional analytical methods including data interpretation and the need to go a step further than just surface imaging analysis.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/análise , Poluentes Químicos da Água/análise , Poliestirenos/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...